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Review
Behavior relies on the distributed and coordinated activ-
ity of neural populations. Population activity can be
measured using multi-neuron recordings and neuroim-
aging. Neural recordings reveal how the heterogeneity,
sparseness, timing, and correlation of population activi-
ty shape information processing in local networks,
whereas neuroimaging shows how long-range coupling
and brain states impact on local activity and perception.
To obtain an integrated perspective on neural informa-
tion processing we need to combine knowledge from
both levels of investigation. We review recent progress
of how neural recordings, neuroimaging, and computa-
tional approaches begin to elucidate how interactions
between local neural population activity and large-scale
dynamics shape the structure and coding capacity of
local information representations, make them state-
dependent, and control distributed populations that
collectively shape behavior.

Neural population codes at multiple scales
In complex animals, information about behaviorally im-
portant variables such as sensory signals or motor actions
is carried by the activity of populations of neurons [1–4].
Our understanding of neural information processing is
founded on the conceptual assumption that, if two or more
sensory stimuli can be discriminated, or two or more
behavioral responses are different, their associated pat-
terns of neural activity must be readily discriminable.
Several key ingredients shape the capacity of a neural
population code (see Glossary) to form such discriminable
representations: the diversity of neural response proper-
ties, their spatial and temporal response profiles, the
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cross-neural correlations, and the state-dependence of
cortical activity (Box 1).

Recent progress in understanding the contribution and
the interplay of each of these key ingredients arises from
both technical and conceptual developments. Experimen-
tal methods now allow measuring and manipulating up to
hundreds of neurons simultaneously in behaving animals
and permit a direct link between population codes and
behavior [5–8]. Multi-scale studies combining invasive
recordings with measurements of neuroimaging signals
are becoming more frequent, allowing us to combine
insights across methodologies [9,10]. Finally, advances
in computational methods for single-trial analysis of mul-
tivariate data allow us to fully exploit the avenues opened
by high-density brain measurements [11–14].

We review here how these developments facilitate the
convergence of knowledge gained from invasive multi-
neuron recordings, neuroimaging data, and mathematical
modeling, and begin to reveal the organization and com-
putations of neural population codes at multiple scales of
organization. For simplicity, we mostly focus on the encod-
ing of sensory variables, but the concepts are relevant for
the generic encoding of any variable (for example, motor
variables).

The diverse response selectivity of sensory neurons
The computational properties of population codes are usu-
ally quantified using measures of the information they carry
about sensory stimuli [15]. The most widely used quantifi-
cations of neural information are based upon Shannon
information (quantifying the accuracy of discrimination
among different stimuli in a set) or Fisher information
(quantifying discrimination of small stimulus changes, or
the accuracy of decoding an individual stimulus). Because
most concepts reviewed here apply to both types of informa-
tion, we only distinguish between them when necessary.

How a neural population represents information is
partly determined by the diverse selectivity of individual
neurons [16]. Individual neurons can carry information
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Glossary

Brain state: brain activity dynamics on a timescale of seconds. It reflects the

interactions between ongoing endogenous activity and sensorimotor proces-

sing, and is strongly influenced by neuromodulatory systems.

Complementary information: two neural codes carry complementary informa-

tion if the information they carry jointly is higher than the information carried

by either code individually; this implies that some information not available in

one code is provided by the other.

Decoding: the estimation (by either the brain or an artificial decoder) of a

variable of interest (for example, the value of a presented sensory stimulus, or

a motor variable) from the observation of a single-trial neural population

response.

Differential correlation: a noise correlation between the firing rates of a pair of

neurons whose strength, for each stimulus value, is proportional to the product

of the derivatives of the tuning curves.

Dimensionality of the neural representation: the minimal number of coordi-

nate axes that are needed to describe the variations of responses across all

trials to all different experimental conditions (for example, all combinations of

sensory stimuli and behavioral responses).

ECoG: electrocorticography.

EEG: electroencephalography.

Encoding: the generation of the set of specific activity patterns that represent a

sensory attribute.

Firing-rate code: neural code that represents stimulus attributes using the

number of spikes emitted in response to the stimulus, regardless of their

temporal pattern.

Fisher Information: a measure of the variance of estimation of a particular

stimulus value (e.g., contrast of a grating) from the single-trial observation of

neural population activity.

Information: a measure of how much knowledge about which stimulus is

being presented can be gained from a single-trial neural population

response. Information is often quantified as Shannon Information or Fisher

Information.

Latency code: a specific form of neural code encoding information in the

timing of the response onset. The time of the response onset is usually

measured with respect to stimulus presentation time, but can be defined also

relative to another neural event (relative latency code).

Local field potential (LFP): a neurophysiological signal obtained by low-pass

filtering extracellular recordings. It captures slow components of both sub- and

supra-threshold neural activity.

Mass signal: a signal that comprises the aggregate neural electric activity in a

local region and captures both supra- and sub-threshold phenomena,

including spiking and synaptic activity. Examples are LFPs, ECOG, MEG, and

EEG.

MEG: magnetoencephalography.

Multiplexing of sensory information: neural coding scheme in which

complementary information is represented in different frequency components

or temporal scales of neural population activity. For example, when different

information is represented by the precise timing of individual spikes on the

scale of milliseconds and by the slow modulation of the spike count on the

scale of hundreds of milliseconds.

Neural population code: the set of response features of a population of

neurons that carry all information about the considered stimuli. These features

consist of spatio-temporal sequences of action potentials distributed across

neurons and/or time.

Noise correlation: a measure of correlation between the firing of a pair of

neurons that cannot possibly be attributed to the sensory stimulus. Noise

correlation is quantified as the correlation between the firing of the neurons in

response to a fixed external stimulus.

Packet: a pattern of firing consisting of a group of neurons firing transiently in

a relatively stereotyped sequence. A packet may encode different stimulus

features by modulating the relative timing and relative firing rate of the subsets

of neurons firing within the sequence.

Phase/power: the current period within a cycle of a given oscillation / the

amplitude of an oscillatory signal.

Readout mechanisms: a set of biophysical computational mechanisms used by

the brain to extract information out of a neural population response.

Shannon Information: a measure of how much (on average) observation of a

neural population response reduces the uncertainty about which stimulus

(among those in a set) is being presented. Also called ‘mutual information’.

Signal correlation: a measure of correlations between the firing of a pair of

neurons that are attributable to the sensory stimulus. Signal correlations are

quantified as the correlation of tuning of the firing of the pair of neurons to the

stimuli (for example, the correlation across stimuli of the tuning curves).

Temporal spike pattern: a repeatable temporal sequence of spikes that carries

information about stimuli.

Time-reference events: a neural (single-neuron or population) activity pattern

that encodes the time of an important event (for example, the onset of a

stimulus) by emitting a transient response with a stereotyped, invariant, and

short latency.

Tuning curve: a mathematical function describing the dependence of the trial-

averaged firing rate of a neuron upon the value of the stimulus.

Tuning width: a measure of the selectivity of neural firing to stimuli. In intuitive

terms, a narrow (respectively coarse) tuning width means that only few

(respectively many) stimuli elicit a strong neural response.
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about sensory stimuli using a firing-rate code [17], for
example by elevating their firing rate when presented with
‘preferred’ stimuli, and decreasing their rate when pre-
sented with other stimuli (Box 1). Nevertheless, even
neighboring neurons may have heterogeneous stimulus
selectivity [18,19]. For example, different neurons may
have different stimulus tuning curves exhibiting a prefer-
ence for different stimulus features or exhibiting different
stimulus tuning widths. The heterogeneity of stimulus
tuning generally implies that individual neurons may
carry complementary information to that provided by
others. As a result, the ability of a heterogeneous popula-
tion to discriminate among stimuli in a set should, under
most conditions, increase with population size. If individ-
ual neurons in a population each prefer well-separated
stimulus features (such that their tuning curves do not
overlap), the range of stimulus features encoded by that
population would increase with population size. If, instead,
neurons in a population have diverse but partly overlap-
ping tuning curves, the complementary information car-
ried by different neurons would lead to a better
discrimination of stimulus features in the regions where
the tuning curves overlap.

The scaling of information with population size depends
on the structure of tuning preferences and of trial-to-trial
response correlations, and its investigation can provide
important insights. It can indicate how many neurons
would be sufficient to achieve a desired level of sensory
accuracy (assuming that the decoding mechanisms or later
processing stages do not discard any of this information).
Its extrapolation to infinite population size sets an upper
bound on the information that can be achieved by a popu-
lation with the considered response properties.

The scaling of information with population size is often
studied by averaging information over subpopulations that
are randomly sampled from the recorded neurons. This
approach typically reveals a steady increase of information
with population size (Figure 1A), and led to the hypothesis
that increasing population size allows the encoding of
arbitrarily high amounts of information [20,21]. However,
recent work [22] has shown that this steady increase may
actually be an artifact resulting from random subsampling.
This artifact arises because of an often neglected aspect of
neural heterogeneity [22]: only a small fraction of neurons
in a given population carry significant sensory information
in a specific context (Figure 1B). As a result of this hetero-
geneity in single-neuron properties, a small but highly
informative subset of neurons is sufficient to carry essen-
tially all the information present in the entire observed
population (Figure 1A) [22].

The above results are part of an emerging picture that
a small-dimensional subspace of the experimentally
measured activity suffices to explain the population dy-
namics underling sensory processing [23] and motor be-
havior [24]. This picture is consistent with the observed
163



Box 1. Neural response features contributing to a population code

Understanding a population code requires investigating its statistical

properties along all relevant dimensions and linking them to the

external events that are encoded (for example, sensory inputs).

Informative response features can spread across the dimension of

time (temporal variations in the responses of individual neurons or of

the population), space (stimulus tuning differences in the firing of

different neurons), or along non-separable combinations of both

dimensions.

Current experimental methods emphasize different dimensions.

Multi-neuron recordings resolving individual neurons at high tempor-

al resolution provide information about both spatial and temporal

dimensions and their non-separable intersection [6]. Imaging techni-

ques such as two-photon imaging resolve individual neurons in space

but often lack the fine temporal resolution to inform about spike

timing [107]. Measures of mass activity at high temporal resolution

(LFP, ECoG, EEG, MEG) cannot resolve individual neurons (and

sometimes even brain regions), but capture temporal activity patterns

that are coordinated across multiple neurons [108].

Diversity of single-neuron firing rates. Neurons with heterogeneous

stimulus preferences can each add complementary stimulus informa-

tion as they each differ in terms of stimulus preference or tuning

width. In the example, neuron A has narrow tuning (it responds only

to the diamond), whereas neurons B and C prefer other stimuli and

have a wider tuning than neuron A. Neuron D is uninformative and

responds equally to all stimuli.

Relative timing. In a population, informative response patterns can

include the relative timing between neurons. For example, the star

and square can be distinguished by the relative timing between

neurons B and C (emphasized by the dashed line connecting their

spikes), while both neurons elicit the same number of spikes for these

stimuli.

Network state modulation. Neural responses depend not only on

sensory inputs but also on large-scale brain states that vary on

timescales slower than the transient responses to individual stimuli.

In the example, these are represented by a slow wave of a mass signal

(e.g., an LFP filtered into a low-frequency component; the bottom

row). In this cartoon, firing rates during one state (reflected by the

peak of the cycle) are stronger than during another state (around the

trough of the cycle), but the individual stimulus preferences or

relative timing are preserved. Such state variables likely play a key –

though not yet fully understood – role in population coding

[60,78,79,81].

Periods of silence. Neural populations also encode information by

the silence (i.e., absence of firing) of some neurons [109]. In the

schematic of Figure I, when neuron A is silent, it is reporting

information about the absence of the diamond.

Time

Network state 

. . .

Neuron A

Neuron C

Neuron B

Neuron D

More excitable

Less excitable
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Figure I. Schematic illustration of informative neural response features in a population code. The figure illustrates the responses of four neurons (A–D) to a set of five

different stimuli each repeated twice (the geometric forms in the frames of the top row). Each small vertical line denotes one action potential. The slow wave at the

bottom denotes a mass signal (e.g., an LFP) capturing the different phases of ongoing slow fluctuations in network state or excitability.
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sparseness of cortical activity [25] (at any moment only a
small fraction of neurons are active) and is compatible
with studies showing that perception and actions can be
driven by small groups of neurons [26]. A sparse popula-
tion code may be advantageous for metabolic efficiency
and may facilitate dendritic computations requiring the
separation of individual synaptic afferents [27,28].

Studies on the auditory system suggest that those neu-
rons contributing the most to a population code are those
that respond sparsely over time, and do so with precisely
timed temporal spike patterns [22,29,30]. Importantly, the
information carried by these precise spike patterns cannot
be replaced by the information in the coarse-scale firing
rates of other neurons in the population (Figure 1C), be-
cause information in spike patterns is complementary to
that in firing rates and because the fraction of neurons
164
carrying information by rates is limited [22]. This implies
that spike timing remains crucial even for population codes
[22,29,31]. The complementary nature of millisecond-scale
spike patterns and firing rates has similarly been observed
in the somatosensory [32] and visual system [33]. Thus,
both the spatial and temporal dimensions are important
for understanding neural population codes, raising ques-
tions as to how such precise timing or population sparse-
ness can be assessed using neuroimaging.

Benefits of mixed selectivity for population coding
In higher association regions the heterogeneity of cortical
neurons expresses itself as patterns of selectivity to multi-
ple sensory and task-related variables, which can be mixed
in complex, sometimes nonlinear ways [34,35]. A pioneer-
ing study unveiled the advantages of nonlinear mixed
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Figure 1. The impact of neural heterogeneity on population codes. Panels A–C plot information about natural sounds carried by neurons in primate auditory cortex and are

reproduced with permission from [22]. (A) Stimulus information in randomly subsampled populations (dark blue) increases steadily with population size. However, an

‘optimized’ subpopulation built by selecting first the most informative neurons shows a much quicker saturation of information with population size (light blue),

demonstrating that a small subset of neurons carries all the information available in the population. (B) The distribution of the information carried by single neurons (dots,

with the line denoting a fit to an exponential distribution) shows a high heterogeneity: only a relatively small fraction of all recorded neurons carry substantial amounts of

information. (C) Contour plot of stimulus information in optimized populations across variations in the read-out precision used for information decoding (x axis) and in

population size (y axis), showing that the information that is lost when decoding responses at coarse temporal precision cannot be recovered by increasing population size.

High values of information can only be reached with 5–10 ms precision, whatever the population size. Panels D–F: schematic of the importance of mixed nonlinear

selectivity, reproduced with permission from [35]. (D) Responses (spikes/s) of hypothetical neurons to two continuous stimulus parameters (a,b) that characterize two

stimulus features. Neurons 1 and 2 are tuned to a single parameter. Neuron 3 is a linear mixed-selectivity neuron whose response is a linear combination of responses to

individual parameters. The circles indicate the responses to three sensory stimuli parameterized by three combinations of the two stimulus parameters. (E) Neuron 4 is a

nonlinear mixed-selectivity neuron: its response cannot be explained by a linear superposition of responses to the individual parameters. (F) The population response

projected onto two sub-spaces created by neurons 1,2,3 and 1,2,4, respectively (the axes indicate the firing rates of the neurons). The left case lacks nonlinear mixed-

selectivity neurons, and hence the responses to the three stimuli lie on a line and cannot be discriminated by a linear classifier (an appropriately positioned plane). The right

case includes a mixed-selectivity neuron, and thus the population responses to the three stimuli lie on a plane, making the stimulus discrimination possible with a linear

classifier.
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selectivity [35]. If responses were selective only to individ-
ual task or stimulus aspects, or to their linear combina-
tions (linear mixed selectivity; Figure 1D), the
dimensionality of the neural representation would be lower
than the number of neurons in the population. In the
example in Figure 1D–F, the neural representation of a
set of stimuli of two linearly mixed neurons lies on a line.
This implies that complex nonlinear operations are re-
quired for decoding the information content (Figure 1F).
By contrast, a heterogeneous nonlinear mixed representa-
tion (Figure 1E) leads to a richer population representation
that has higher dimensionality than its linear counterpart
165
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and that can be more easily decoded by downstream areas
using linear combinations of neural activity [36]
(Figure 1F). In sum, heterogeneous nonlinear mixtures
of selectivity increase the effective dimensionality of a
population code and help to extract diverse information
using simple linear decoding.

This high-dimensional population representation by
mixed selectivity may seem at odds with reports of small
subpopulations effectively encoding primary sensory infor-
mation. However, sparseness and high dimensionality of
mixed nonlinear selectivity can coexist and may even
combine optimally under appropriate conditions [37]. In
fact, when nonlinearly mixed neural representations are
also sparse, they naturally achieve an optimal trade-off
between the need to maximize the diversity of responses to
different stimuli (increasing the stimulus discrimination
properties of population responses), and the need to main-
tain high response reliability (i.e., achieving consistent
responses for noisy variations of the input) [37]. Nonethe-
less, systematic studies comparing the sparseness of neu-
ral responses across brain regions will be necessary to
clarify the extent to which neural populations take advan-
tage of the potential benefits offered by sparse representa-
tions. Neuroimaging appears suited for this goal because it
allows comparing neural representation spaces across spe-
cies and sensory systems, and tracing these over time
during task performance [9,14,38].

Correlations of spike rates between neurons
The computational properties of a population code depend
also on the pattern of response correlations between neu-
rons [39]. Traditionally, a distinction is made between
signal correlations (quantifying the correlation of the tri-
al-averaged neural responses across the different stimuli,
and thus quantifying the similarity of stimulus tuning) and
noise correlations (quantifying the correlation of trial-by-
trial variations of response at fixed stimulus attributes).
Much work on population codes has focused on correlations
between the firing rates of pairs of neurons.

When tools for simultaneous multi-neuron recordings
became widely available in the 1990s, two divergent views
were proposed about the impact of noise correlations be-
tween firing rates. The first holds that noise correlations of
firing rates – if modulated by the stimulus – may act as a
separate coding mechanism complementary to firing rates
[40,41]. For example, it has been proposed that the dynam-
ic stimulus-dependence of noise correlations among visual
neurons (originating from changes in gamma-band syn-
chronization among populations) carries information
about whether individual neurons respond to the same
or separate objects [42]. This view has deeply influenced
the interpretation of neural mass signals measured by
neuroimaging because it suggests that changes in correla-
tion (or coherence) between the activities of distinct popu-
lations may reflect how these populations encode
information. The second view is that noise correlations
of firing rates may impose limits on the growth of informa-
tion with population size [43]. For example, for neurons
with identical tuning curves, the presence even of weak
positive noise correlations precludes the possibility to
improve the accuracy of sensory information encoding by
166
simply averaging the rate of many neurons (correlated
noise can only be removed to a limited extent by averag-
ing). This second view influenced studies on neural popu-
lation codes, and motivated recent work on how neuronal
networks may dynamically decrease noise correlations to
reduce their potentially limiting effect on information
encoding [44,45]. It has also been argued that the limiting
effect of correlation may partially be overcome in popula-
tions with heterogeneous tuning and correlation properties
[46,47].

The potential impact of correlations on population cod-
ing has been studied extensively using model-based
approaches that quantify stimulus information under var-
ious assumptions about correlation structures or readout
mechanisms [15,48,49]. This approach has shown that
correlations can influence neural population coding in
more complex way than described above: depending on
the precise pattern of signal and noise correlations, and the
choice of readout mechanisms, correlations can increase,
decrease, or leave unaffected the information carried by a
population [1,15,40,49–51]. An important insight of these
theoretical studies is that the precise pattern of noise
correlation matters more than noise correlation strength
or population size. For example, a recent study [49] con-
sidered the ability (quantified using Fisher information) to
estimate small changes in a stimulus from population
activity, and found that the type of noise correlations that
limit the increase of information with population size are
so-called differential correlations. Intuitively, such differ-
ential correlations correspond to correlated trial-to-trial
variability of neural responses that shift the profile of
population activity such that it looks like the population
activity that would have been elicited by a slightly differ-
ent stimulus. Thus, this correlated variability makes a
noisy fluctuation of population activity look like the sig-
nal representing a different stimulus value, and thus acts
as a source of noise that cannot be eliminated even by
increasing the number of neurons. Whether these infor-
mation-limiting correlations actually occur can be empir-
ically investigated by computing information versus the
number of neurons and investigating whether informa-
tion saturates with population size. Because information
depends crucially on the structure of correlations, extrap-
olation of its dependence on population size from real
data should be performed using decoding approaches
[16,49] rather than making strong but difficult-to-
validate assumptions about the structure and shape of
correlations [49].

Besides determining the amount of information carried
by neural populations, noise correlations in firing rates
may also be indicative of important computational func-
tions [52]. Noise-correlations may have a role in probabi-
listic codes representing sensory uncertainty by reflecting
correlations in the uncertainty associated with individual
stimulus variables [53,54]. For example, for an ambiguous
input consistent with one of two possible stimuli, the
neurons representing these two stimuli would be negative-
ly correlated because evidence for one stimulus speaks
against the other [55]. It has also been argued that positive
correlations within larger populations make the code
sparser by increasing periods of population quiescence,
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Figure 2. Phase coding observed from single-trial analysis of mass signals. (A)

Encoding of visual features in the phase of EEG signals. (Left) Information about

visual stimuli carried by time-frequency EEG data reveals phase-specific coding of

stimulus features (eyes and mouth of a face). (Right) Time-frequency

representation of feature coding. In both panels, information carried by the EEG

signal is color-coded, with warmer colors indicating higher information values.

The contralateral eye was encoded by the phase at the 10 Hz signal (reproduced

from [94]). (B) Phase encoding of continuous speech in auditory cortex. Theta-

band (3–7 Hz) phase in bilateral auditory cortex dynamically encodes temporal

variations in the envelope of continuous speech and modulates the amplitude of

high-frequency gamma oscillations (reproduced from [92]). (C) Correlation

between the performance (quantified as percentage of correctly decoded trials)

in decoding which natural sound was presented when using auditory cortical firing

rates in non-human primates, and the performance in decoding natural sounds

when using theta-band EEG phase/power in humans. The same natural sound

stimuli were presented to both species. Theta-band EEG phase captures better the

stimulus selectivity of cortical firing rates (reproduced from [91] with permission of

Oxford University Press).
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and hence concentrate information into rare periods of
common activity [56–58]. This latter property may strongly
shape how cortical activity is seen through neuroimaging.

Correlations of spike timing between neurons
Correlations between spike times can also contribute to
population codes, for example by facilitating the readout of
temporal response patterns in a relative latency code.
Individual neurons can encode stimuli by their response
latency (that is, the delay between stimulus onset and
neural firing) [59,60]. Although information in the latency
of an individual neuron may not be directly accessible to a
downstream decoder (because measuring latency requires
information about the precise time of stimulus onset),
information in the relative latency between neurons may
be robustly extracted by exploiting the fact that trial-by-
trial shifts of latency are often correlated across a popula-
tion [61–63]. For example, latencies of different neurons
may tend to be all-late or all-early because of global fluc-
tuations in network excitability. Correlated latency shifts
preserve the relative order of firing or latency differences
across neurons, whereas uncorrelated shifts do not. In
auditory cortex, the readout of such relative timing may
be further supported by time-reference events, in other
words, population response patterns that encode the stim-
ulus time with an early, stimulus-invariant latency
[64]. Stimulus-selective neurons can then encode the stim-
ulus identity by the time of their spikes relative to these
reference events [64]. Although these relative-latency
codes are often studied at the pairwise level, recent work
suggests that they may reflect a more general larger-scale
organization of population activity: groups of neurons may
be co-active in stereotyped sequences (termed packets
[65]), and the relative timing and strength of each neuron
within this sequence may encode specific stimulus attri-
butes [65,66].

Finally, correlations between spike times may also en-
sure the transmission of information across areas, for
example by facilitating the impact on post-synaptic targets
[67,68] or by facilitating the selective read-out of specific
combinations of afferents [69,70]. All in all, this suggests
that the relative timing between neurons contributes both
to representing sensory information and to transmitting
this information between areas.

State-dependence of population codes
Local neural activity not only depends on the current
sensory input but also on the current brain state [71,72]. Al-
though feed-forward inputs to local circuits provide senso-
ry afferents, the abundance of recurrent and feedback
connections, and of neuromodulatory inputs, shapes the
background activity on which this sensory information is
processed [73–75]. For example, neuromodulatory inputs
that are not directly stimulus-related (such as cholinergic
or noradrenergic signals that are an essential component of
the control of the animal’s behavioral state) can profoundly
change the excitability of sensory cortical circuits, the
degree of correlation among neurons, and the gain and
reliability of individual neurons [76,77]. Variations in
brain state account for a significant fraction of the trial-
to-trial variability of population activity [78].
This state-dependence must have profound – but largely
unexplored – implications for how population codes oper-
ate. State-dependence may imply that populations trans-
mit information only using codes that are robust to state
fluctuations (e.g., relative latencies or relative firing-rates).
Alternatively, downstream areas may extract variables
indicating the current state from network activity (simi-
larly to procedures used in data analysis [78]) and then use
state-dependent decoders to interpret population activity.
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Box 2. Comparisons of stimulus selectivity in mass signals and spiking activity

Measurements of neural mass activity with high temporal resolution

(LFP, MEG, EEG, ECoG) provide rich signals varying on multiple

timescales [110] and exhibiting reasonable spatial specificity

[110]. Nevertheless, owing to the multiple neural phenomena they

capture, and because of uncertainties in source localization and to

cancellation of local signals [11,102,108], they are difficult to interpret

in terms of the underlying neural processes. However, some relations

between mass signals, spiking activity, and sensory encoding are

emerging from recent work.

Specific frequency components extracted from MEG and EEG

signals seem to be particularly predictive of neural firing rates.

Combined neural and EEG recordings from visual cortex show that

the phase of low frequency (<10 Hz) and the amplitude of high-

frequency (gamma, 40–100 Hz) rhythms carry the most information

about the strength of local firing, and each offer complementary

information about the firing rate [111]. An indirect comparison of

auditory stimulus selectivity in firing rates and EEGs revealed the

strongest association with the phase (but not power) of low-frequency

components [91]. How do the phase of low-frequency components,

and the amplitude of faster components, relate to sensory encoding?

The phase of low-frequency (<12 Hz) rhythms likely reflects

changes in local network excitability that shape both stimulus

responses and spontaneous background activity. Evidence for this

comes from neural recordings [112] and from neuroimaging studies

demonstrating a causal relation between the phase of low-frequency

activity and single-trial stimulus detection [113–115]. Hence, the

phase of low-frequency network activity may indicate whether or

not local networks are in a state facilitating the encoding of sensory

information and driving perception. Some theories suggest that the

excitability fluctuations marked by the low-frequency phase help to

prioritize the encoding of salient features [60,115].

Does this phase also indicate what is encoded? Recent work

suggests this is the case: low-frequency phase can reflect the slow

temporal structure of dynamic sensory stimuli. Experimental data and

network models show that slow brain rhythms entrain to low-

frequency variations of natural stimuli such as speech, directly

inducing sensory information in the phase of these signals (e.g.,

[91,92,116,117]).

In visual cortices the amplitude of gamma rhythms is the signal

component carrying the most sensory information [118]. Models of

gamma generation suggest that its amplitude reflects the instanta-

neous strength of local interactions between inhibitory and excitatory

neurons, which is roughly proportional to the stimulus input – if

excitation and inhibition are balanced [119]. Thus, gamma amplitude

is expected to encode aspects of current stimulus features rather than

the slow stimulus dynamics (which is reflected by slower signal

components). The validity of this hypothesis requires further experi-

mental tests, as does the causal role of such rhythms for behavior.
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Progress in understanding state-dependent coding
requires better statistical methods for single-trial analysis
that can be applied to different measurements of brain
activity to disentangle state-dependent and -independent
aspects of a code [12,79–81].

Insights on population coding from mass activity
Although a complete description of population codes may
require recording all neurons involved in the considered
task, important empirical knowledge about population
codes can be gained from measurements of neural mass
signals with high temporal resolution (LFP, ECOG, EEG,
MEG). These measurements lack cellular-level resolution
but can be easily applied to multiple brain areas and
complex tasks, and are sensitive to both supra- and sub-
threshold activity. Importantly, they have the potential to
capture indicators of cortical state that cannot be easily
extracted from the spiking activity of a few neurons alone
[11].

Advances in single-trial data analysis have expanded
the use of mass signals to study sensory transformations,
permitting researchers to study the same questions using
neuroimaging, multi-neuron recordings, and computation-
al models. For example, recent neuroimaging studies
extracted features of population activity influencing the
variability of single-trial percepts [82–84], and demon-
strated that visual object categories [85] or fine details
of auditory signals [86–90] can be recovered using stimulus
reconstruction or decoding methods.

Additional insights can be gained from mass signals by
decomposing them into specific frequency bands and sepa-
rating the sensory information carried by power and phase
of individual bands. Recent work, based on both invasive
(LFP) and non-invasive (EEG and MEG) recordings, has
individuated the phase of low-frequency activity as a par-
ticularly informative feature of mass activity [85,91–95]. In
the visual system, detailed sensory features are reflected
more in the phase of low-frequency (below 12 Hz) activity
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than in the power [1,94,96] (Figure 2A). Related findings
were made in the auditory system, where the phase of low-
frequency activity encodes speech or complex sounds [91–
93,95,97] (Figure 2B,C). Stepping beyond single-site anal-
ysis, some studies found that the relative timing of neural
responses across different sites carries more sensory infor-
mation than the activation of individual sites
[85,98,99]. These results hence suggest that the relative
timing of population activity could at least be as important
for sensory coding as the strength of activity of an indi-
vidual population, in line with insights from studies on
spiking activity that highlight the role of relative response
timing.

An important population coding principle emerging
from the analysis of mass signals (both using MEG and
EEG [92,94] or intracranial recordings [60,100,101]) is that
of multiplexing of sensory information: different frequency
bands of population activity each carry complementary
information about stimulus features. For example, nested
patterns of slower (e.g., delta or theta) and faster (e.g.,
gamma) auditory cortical rhythmic activity encode com-
plementary aspects of speech (Figure 2B) [92]. These
results illustrate the multiple coding dimensions of popu-
lation signals, and highlight the importance of understand-
ing how specific aspects of coding in spiking activity map
onto phase and power of rhythmic mass signals. Specific
challenges for understanding the link between non-inva-
sive neuroimaging and neural population codes are out-
lined in Box 2 and in the outstanding questions (Box 3).

Insights from the combined observations of single
neurons and mass signals
Important insights about population codes further arise
from studies that simultaneously measure spiking
responses and mass signals, or that perform comparative
analysis on such data obtained in separate experiments.

One key opportunity of the joint measurements arises
from the complementary nature of single-neuron firing and
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of mass signals: mass signals capture aspects of sub-
threshold activity and of intrinsically driven state-changes
that cannot be measured by observing the spiking activity
of a few neurons alone [11,102]. Thus, low-frequency mass
activity can be seen as a measure of the background state
fluctuations constituting the ‘context’ that affects proces-
sing of the ‘content’ carried by sensory inputs [103]. Exam-
ining the responses of individual neurons relative to the
phase of low-frequency network rhythms can shed light on
how the local circuit context affects the specific sensory
content encoded in spiking activity.

Converging studies suggest that single-neuron spike
timing depends on the frequency-specific oscillatory LFP
phase (Figure 3A), and that the sensory information car-
ried by spiking activity can be better interpreted when the
network context during which spikes were emitted is
known [101,104] (Figure 3A). A recent study in the human
medial temporal lobe showed that perception-related
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Box 3. Outstanding questions

� How is it possible that mass signals carry sensory information given

that only a small fraction of neurons are informative? How does

neural heterogeneity affect what we can learn from mass signals?

� How do microscopic-level neural coding mechanisms (neuronal

heterogeneity, sparseness) interact with macroscopic scale

aspects of neural activity (patterns of coupling across multiple

areas or global state changes)?

� Is mixed selectivity a hallmark of higher (association) brain

regions, and does the mixed selectivity (previously observed

across neurons) also exist in the time or frequency domains of

neural activity (i.e., do different temporal signal components

exhibit mixed selectivity)?

� What do neural correlations imply for mass signals, and how can

we infer some properties of the microscopic structure of neural

population codes from mass signals?

� How do local descriptions of cortical state (derived from multi-

neuron recordings) relate to state-dependent signatures visible in

neural mass activity?

� How can we best integrate recent advances in cellular imaging

and histochemical or morphological analysis to disentangle the

contribution of specific cell types to neural population codes?
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sites [106] (Figure 3B). The similarity of preferences in
LFP phase coupling between neurons also predicts the
similarity of their firing-rate variations: neurons that pre-
fer similar patterns of phase coupling exhibit similar
changes in firing rates with time or task, whereas neurons
with different phase preferences show divergent firing-rate
dynamics [106]. This provides direct evidence that large-
scale functional connectivity shapes local activation pat-
terns and controls the co-activation and coordination of
anatomically dispersed but functionally integrated ensem-
bles of neurons, thus breaking new ground in the under-
standing of the large-scale organization of neural
population codes.

Another approach to clarify the neural basis of the sen-
sory information carried by different components of MEG/
EEG signals is based on the use of information theoretic or
stimulus-decoding methods [16] to compare quantitatively
the similarities of stimulus encoding in mass signals and
multi-neuron recordings [9,14,38]. This approach revealed
(Figure 2C) that the phase (and to a much lesser extent the
power) of low-frequency mass activity captures some aspects
of the sensory information carried by population spiking
activity [91]. Such comparative approaches will be crucial
for understanding what mass signals can tell us about the
underlying neural information processing (Box 2) and open
the possibility to study emerging principles such as multi-
plexing, mixed selectivity, or of state-dependence across
scales of brain measurements.

Concluding remarks
Understanding the properties and principles of cortical
population codes requires identifying the most informative
patterns within the spatio-temporal complexity of multi-
neuron activity and understanding how coding properties
are affected by large-scale state changes. Invasive record-
ings provide detailed access to the heterogeneity, temporal
precision, and correlation structure of multi-neuron activ-
ity, properties which recent computational studies high-
light as being crucial for shaping the information-coding
properties of a population. Mass signals, on the other hand,
170
provide more direct access to large-scale changes in net-
work state and connectivity, other crucial properties that
shape information coding and which can account for trial-
by-trial variations in cognitive tasks. Combining insights
from both mass signals and multi-neuron recordings is a
key challenge for the future.

In light of the reviewed properties of population codes
several questions emerge about the integration of micro-
scopic and macroscopic structure of population codes (Box 3).
For example, can the mechanisms that seem crucial at the
microscopic scale (such as neuronal heterogeneity, sparse-
ness, or correlations or mixed selectivity) be observed from
mass signals? In turn, how do specific patterns of activity
observed at the macroscopic scale (such as patterns of phase
coupling across multiple areas or global state changes)
relate to the coding properties that are crucial at the micro-
scopic scale? For sure, much is to be learned by methods,
such as single-trial stimulus decoding or reconstruction
methods, that allow a comparative and detailed assessment
of similarity and complementarity of activity at each spatial
and temporal scale.

To enhance our understanding of population coding,
future developments of methods for high-dimensional data
analysis and neural modeling will be necessary as well.
Recent work has provided improvements in analytical
techniques for reducing high-dimensional datasets and
extracting the relevant sensory representations [11–
14]. In addition, biophysical models of sensory representa-
tions in cortical microcircuits allow a principled and rigor-
ous direct link between neural signals and computing
architectures, facilitating our understanding of how coding
principles are implemented in the neural circuits. Being
able to subject different neural signals to the same scien-
tific question and analysis routine, and being able to
compute both spiking and mass signals from the same
plausible neural network models [11], are two crucial
features to further improve our understanding of neural
population coding in the future.
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R. Schwarzlose for useful feedback on an early version of the manuscript,
to J. Carmena and S. Fusi for sharing their figures, and to S. Maistrelli
for help with figure reprint permissions. We acknowledge the financial
support of the VISUALISE and SICODE projects of the Future and
Emerging Technologies (FET) Programme within the Seventh Frame-
work Programme for Research of the European Commission (FP7-ICT-
2011.9.11; FP7-600954 and FP7-284553), and of the European Commu-
nity’s Seventh Framework Programme FP7/2007-2013 (PITN-GA-2011-
290011), by the UK Biotechnology and Biological Sciences Research
Council (BBSRC, BB/L027534/1), by the Max Planck Society, the
Wellcome Trust (098433), the Autonomous Province of Trento (Call
‘Grandi Progetti 2012’, project ‘Characterizing and improving brain
mechanisms of attention – ATTEND’) and was part of the research
program of the Bernstein Center for Computational Neuroscience,
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